A special class of pure O-sequences

Takayuki Hibi Department of Pure and Applied Mathematics Graduate School of Information Science and Technology Osaka University, Suita, Osaka 565-0871, Japan hibi@math.sci.osaka-u.ac.jp

Abstract

Let x_1, \ldots, x_s represent distinct indeterminates with deg $x_i = 1$, for $i = 1, \ldots, s$. A nonempty, finite set \mathcal{A} of monomials in x_1, \ldots, x_s is called an *order ideal of monomials* if for any $u \in \mathcal{A}$ and any monomial v that divides u, we have $v \in \mathcal{A}$. In particular, $1 \in \mathcal{A}$ for any order ideal of monomials \mathcal{A} . We say that \mathcal{A} is *pure* if the maximal elements of \mathcal{A} , with respect to divisibility, all have the same degree. The *h*-vector of \mathcal{A} is defined as $h(\mathcal{A}) = (h_0, h_1, \ldots, h_n)$, where

$$n = \max\{\deg u : u \in \mathcal{A}\}$$
 and $h_i = |\{u \in \mathcal{A} : \deg u = i\}|, \text{ for } 0 \le i \le n.$

Clearly, $h_0 = 1$. A finite sequence of positive integers $h = (h_0, h_1, \ldots, h_n)$ is called an *O*-sequence if there exists an order ideal of monomials \mathcal{A} with $h = h(\mathcal{A})$. An *O*-sequence h is pure if there exists a pure order ideal of monomials \mathcal{A} with $h = h(\mathcal{A})$.

A classification of the possible O-sequences is essentially due to Macaulay. On the other hand, an explicit characterization of pure O-sequences seems entirely out of reach, despite much effort by many researchers. The purpose of the present talk is to classify the pure O-sequences of the form $(1, a, a, \ldots, a, b)$. This is a joint work with Tài Huy Hà and Fabrizio Zanello (arXiv:2404.08183).